313.100 (20S) Elementary Discrete Mathematics

Sommersemester 2020

Registration deadline has expired.

First course session
05.03.2020 14:00 - 16:00 HS 3 On Campus
... no further dates known

Overview

Lecturer
Tutor/Tutors
LV Nummer Südostverbund INC02001UL, INC03001UL, MAA01001UL
Course title german Elementare Diskrete Mathematik
Type Lecture - Practical class (continuous assessment course )
Hours per Week 2.0
ECTS credits 3.0
Registrations 14 (25 max.)
Organisational unit
Language of instruction German
Course begins on 05.03.2020
eLearning Go to Moodle course

Time and place

List of events is loading...

Course Information

Intended learning outcomes

Die Studierenden erwerben ein solides Verständnis von und einen sicheren Umgang mit ausgewählten Begriffen, Verfahren und Arbeitsweisen der elementaren diskreten Mathematik. Sie verfügen über exemplarische Kenntnisse mathematischer Werkzeuge und Beweistechniken sowie typischer fachspezifischer Denk- und Arbeitsweisen. 

Teaching methodology including the use of eLearning tools

Vortrag, Lösen und Präsentation von Aufgaben durch Studierende.

Hinweis:  Diese LV wird voraussichtlich als "flipped classroom" geführt. Die LV gliedert sich grob in 5 Abschnitte, die jeweils aus ca. zwei 30-45 minütigen Online-Videos, einer kombinierten Vorlesungs- und Tutoriumssitzung (60 + 60 Minuten) und einer "klassischen" Übungssitzung (Studierende zeigen Aufgabenlösungen vor, 90 Minuten) besteht.

Die Übungstermine sind in der Terminübersicht als solche vermerkt

Course content

  • Kombinatorik, insbes. Zählprinzipien
  • Peano-Axiome und vollständige Induktion
  • Mengen, Aussagen, Beweise
  • Zahldarstellungen
  • Primzahlen und modulare Arithmetik
  • Funktionen und Relationen

Literature

Kirsch, Arnold (2004): Mathematik wirklich verstehen. Eine Einführung in ihre Grundbegriffe und Denkweisen. Köln: Aulis Verlag Deubner. (Hauptquelle)

Schubert, Matthias (2012): Mathematik für Informatiker. Ausführlich erklärt mit vielen Programmbeispielen und Aufgaben. Wiesbaden: Vieweg + Teubner.

Teschl, G. & Teschl, S. (2008). Mathematik für Informatiker. Band 1: Diskrete Mathematik und Lineare Algebra (3. Auflage). Berlin, Heidelberg: Springer.

Weitere, themenspezifische Literatur wird ggf. in der LV bekanntgegeben.

Examination information

Im Fall von online durchgeführten Prüfungen sind die Standards zu beachten, die die technischen Geräte der Studierenden erfüllen müssen, um an diesen Prüfungen teilnehmen zu können.

Modified examination information (exceptional COVID-19 provisions)

Für den Zeitraum in dem Präsenzlehrveranstaltungen bzw. -prüfungen nicht möglich sind, gelten die folgenden Anpassungen für die Beurteilung dieser Lehrveranstaltung

Übungseinheiten:  Die Übung wird via BigBlueButton abgehalten (den entsprechenden Link findet man im Moodle Kurs). Der Online Kurs findet zur selben Zeit wie ursprünglich geplant statt.  Um an den Übungen teilzunehmen, müssen die Student*innen

  • die Aufgaben wie zuvor online ankreuzen und
  • Fotos/Scans ihrer Lösungen im Moodle bis 15 Minuten vor Beginn der jeweiligen Einheit hochladen.
  • Die Student*innen werden wie bereits zuvor per Zufallsprinzip ausgewählt um ihre Lösungen in der BBB Session zu präsentieren, wobei sie ihre zuvor hochgeladenen Lösungen verwenden dürfen.
  • Falls die Teilnahme an der Einheit aufgrund technischer Probleme nicht möglich ist, wird die entsprechende Person, sollte sie zur Präsentation einer Aufgabe ausgewählt worden sein, über die unter den Kontaktdaten auf campus.aau.at eingetragene Telefonnummer angerufen. In diesem Fall muss die Lösung am Telefon erklärt werden und anschließend eine detaillierte schriftliche Lösung (inklusive aller Erklärungen) abgegeben werden, welche dann im Moodle für alle Teilnehmer*innen hochgeladen wird.

Prüfung: Für den Zeitraum, in dem schriftliche Präsenzprüfungen nicht möglich sind, werden Prüfungen für diese Lehrveranstaltung online via Moodle/BigBlueButton gemäß den Richtlinien auf https://www.aau.at/corona/pruefungen abgehalten. Jedenfalls wird auch ein Präsenzprüfungstermin angeboten werden, wenn die Maßnahmen diese wieder zulassen.  Ablauf dieser mündlichen Prüfung:

  1. Sie erhalten eine innerhalb von 15 Minuten zu bearbeitende Aufgabenstellung. Während der Bearbeitung sind Unterlagen zur VO verwendbar.
  2. Es wird anschließend ein ca. 20 minütiges Prüfungsgespräch geführt, bei dem nur Ihre schriftliche Ausarbeitung zu der Aufgabenstellung als Unterlage verwendet werden darf.

Prüfungsanmeldung erfolgt in diesem Fall via Moodle.

Examination methodology

  1. Schriftliche Prüfung (in der sicheren Prüfungsumgebung) am Ende des Semesters
  2. Prüfungsimmanente Leistungen: Kreuzeln, ggf. Abgabe und Präsentation von Übungsbeispielen (via Moodle)
  3. Übungstermine:  5 Termine, werden noch bekanntgegeben (die besten 4 Termine werden gewertet).
  4. Prüfungstermin: wird rechtzeitig bekanntgegeben, voraussichtlich 1. Feber-Woche.
  5. The course will be held in German, exercises and the exam will also be provided in English if necessary.


Examination topic(s)

Themen der Veranstaltung

Assessment criteria / Standards of assessment for examinations

regelmäßige aktive Teilnahme (inkl. Übungen, vgl. erste Vorbesprechung/Moodle) + schriftliche (ggf. elektronische) Prüfung am Ende des Semesters

Grading scheme

Grade / Grade grading scheme

Position in the curriculum

  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Informatik (SKZ: 414, Version: 15W.2)
    • Subject: Mathematische Grundlagen (AAU) (Compulsory elective)
      • INC.002 Diskrete Mathematik und lineare Algebra ( 2.0h UE / 4.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
          Absolvierung im 2. Semester empfohlen
  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Informatik (SKZ: 414, Version: 17W.2)
    • Subject: Mathematische Grundlagen (AAU) (Compulsory elective)
      • INC.003 Elementare Diskrete Mathematik ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
          Absolvierung im 3. Semester empfohlen
  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Mathematik (SKZ: 420, Version: 15W.2)
    • Subject: Elementare Mathematik 1 (Compulsory subject)
      • MAA.001 Elementare Diskrete Mathematik ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Mathematik (SKZ: 420, Version: 17W.2) part of STEOP (Introductory & Orientation Period)
    • Subject: Elementare Mathematik 1 (Compulsory subject)
      • MAA.001 Elementare Diskrete Mathematik (STEOP) ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Bachelor-Lehramtsstudium Bachelor Unterrichtsfach Mathematik (SKZ: 420, Version: 19W.2) part of STEOP (Introductory & Orientation Period)
    • Subject: Elementare Mathematik 1 (Compulsory subject)
      • MAA.001 Elementare Diskrete Mathematik (STEOP) ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Teacher training programme Computer Sciences and Computer Sciences Management (Secondary School Teacher Accreditation) (SKZ: 884, Version: 04W.7)
    • Stage one
      • Subject: Mathematik und Theoretische Informatik (LI 1.2) (Compulsory subject)
        • Mathematik für Informatiker I ( 4.0h VO / 4.0 ECTS)
          • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
  • Teacher training programme Mathematics (Secondary School Teacher Accreditation) (SKZ: 406, Version: 04W.7)
    • Stage one
      • Subject: Algebra und Geometrie (LM 1.3.) (Compulsory subject)
        • Diskrete Mathematik ( 4.0h VO / 5.0 ECTS)
          • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 17W.1)
    • Subject: Mathematik und Theoretische Grundlagen (Compulsory subject)
      • 3.3 Elementare Diskrete Mathematik ( 2.0h VU / 3.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Bachelor's degree programme Information Management (SKZ: 522, Version: 17W.1)
    • Subject: Wahlfach Mathematik und Statistik (Informatik) (Compulsory elective)
      • 5.2 Lehrveranstaltungen aus dem Studium Angewandte Informatik/Bereich Mathematik und Statistik für Informatik ( 0.0h VO,KS / 12.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
  • Bachelor's degree programme Information Management (SKZ: 522, Version: 12W.1)
    • Subject: Wahlfach Mathematik und Statistik (Informatik) (Compulsory elective)
      • 1.1.1 Lineare Algebra und Diskrete Mathematik ( 0.0h KU / 3.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)
  • Erweiterungscurriculum Grundlagen Mathematik (Version: 16W.1)
    • Subject: Basiswissen (Compulsory subject)
      • Elementare Diskrete Mathematik ( 0.0h VU / 3.0 ECTS)
        • 313.100 Elementary Discrete Mathematics (2.0h VU / 3.0 ECTS)

Equivalent courses for counting the examination attempts

Sommersemester 2024
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2023/24
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Sommersemester 2023
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2022/23
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Sommersemester 2022
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2021/22
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Sommersemester 2021
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2020/21
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2019/20
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Sommersemester 2019
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2018/19
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2017/18
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2016/17
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)
Wintersemester 2015/16
  • 313.100 VU Elementare Diskrete Mathematik (2.0h / 3.0ECTS)