700.304 (17W) Fundamentals of Image Processing
Überblick
- Lehrende/r
- LV-Titel englisch Fundamentals of Image Processing
- LV-Art Vorlesung-Kurs (prüfungsimmanente LV )
- Semesterstunde/n 2.0
- ECTS-Anrechnungspunkte 4.0
- Anmeldungen 11 (50 max.)
- Organisationseinheit
- Unterrichtssprache Englisch
- mögliche Sprache/n der Leistungserbringung Deutsch
- LV-Beginn 22.01.2018
- eLearning zum Moodle-Kurs
Zeit und Ort
LV-Beschreibung
Intendierte Lernergebnisse
The students
- are able use the basic methods for image processing,
- have a good command of the machine learning approaches for the description of image features and object recognition,
- are able to transfer the acquired knowledge of image processing to solve complex applications for industry and research,
- are able to describe the state-of-the-art of the presented topics
Lehrmethodik inkl. Einsatz von eLearning-Tools
The course has two major parts. The first part consists of the theoretical and methodic fundamentals that will be introduced during the lecture. The second part consists of intensive lab work where students can implement, test, and apply the presented methods. The major lab language will be Matlab but additional programming languages will be introduced like C++ (OpenCV) and Python.
Inhalt/e
- Introduction (color systems & image formats
- Image Transformations
- Image Filtering
- Morphology
- Edge Detection
- Polygon and Corner Detection
- Image Interpolation
- Invariant Features
- Camera Calibration
- Scale invariant feature transform
- Object Recognition
- Autonomous Vehicles
Erwartete Vorkenntnisse
Basic knowledge of any programming language
Literatur
Machine Vision, E.R. DaviesElsevier, Third EditionISBN-10: 0122060938ISBN-13: 978-0122060939Digital Image Processing (3rd Edition)[Hardcover] Rafael C. Gonzalez (Author), Richard E. Woods (Author)ISBN-10: 013168728XISBN-13: 978-0131687288
Prüfungsinformationen
Prüfungsmethode/n
Written Exam + Project
Prüfungsinhalt/e
The student should pass a written exam successfully which reflects the understanding of the presented concepts and approaches. Additionally, the students should design and implement a fully working system in the field of machine learning.
Beurteilungskriterien/-maßstäbe
The final evaluation is divided as follows:
70% Exam
30% Project
Beurteilungsschema
Note BenotungsschemaPosition im Curriculum
- Bachelorstudium Angewandte Informatik
(SKZ: 511, Version: 17W.1)
-
Fach: Informationstechnik
(Wahlfach)
-
2.6 Bildverarbeitung (
2.0h VC / 3.0 ECTS)
- 700.304 Fundamentals of Image Processing (2.0h VC / 4.0 ECTS) Absolvierung im 5. Semester empfohlen
-
2.6 Bildverarbeitung (
2.0h VC / 3.0 ECTS)
-
Fach: Informationstechnik
(Wahlfach)
- Bachelorstudium Angewandte Informatik
(SKZ: 511, Version: 12W.1)
-
Fach: Informationstechnik
(Wahlfach)
-
Bildverarbeitung (
2.0h VO / 3.0 ECTS)
- 700.304 Fundamentals of Image Processing (2.0h VC / 4.0 ECTS)
-
Bildverarbeitung (
2.0h VO / 3.0 ECTS)
-
Fach: Informationstechnik
(Wahlfach)
- Bachelorstudium Informationstechnik
(SKZ: 289, Version: 12W.2)
-
Fach: Informationstechnische Vertiefung
(Wahlfach)
-
Wahl von Lehrveranstaltungen (
0.0h VK/VO/KU / 6.0 ECTS)
- 700.304 Fundamentals of Image Processing (2.0h VC / 3.0 ECTS)
-
Wahl von Lehrveranstaltungen (
0.0h VK/VO/KU / 6.0 ECTS)
-
Fach: Informationstechnische Vertiefung
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
- 700.304 Fundamentals of Image Processing (2.0h VC / 4.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Technical Complements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 5) (
0.0h VK, VO, KU / 12.0 ECTS)
- 700.304 Fundamentals of Image Processing (2.0h VC / 4.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 5) (
0.0h VK, VO, KU / 12.0 ECTS)
-
Fach: Technical Complements (NC, ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
- 700.304 Fundamentals of Image Processing (2.0h VC / 4.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 4) (
0.0h VK, VO, KU / 14.0 ECTS)
-
Fach: Information and Communications Engineering: Supplements (NC, ASR)
(Wahlfach)
- Masterstudium Information and Communications Engineering (ICE)
(SKZ: 488, Version: 15W.1)
-
Fach: Technical Complements (NC, ASR)
(Wahlfach)
-
Wahl aus dem LV-Katalog (Anhang 5) (
0.0h VK, VO, KU / 12.0 ECTS)
- 700.304 Fundamentals of Image Processing (2.0h VC / 4.0 ECTS)
-
Wahl aus dem LV-Katalog (Anhang 5) (
0.0h VK, VO, KU / 12.0 ECTS)
-
Fach: Technical Complements (NC, ASR)
(Wahlfach)
Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung
-
Wintersemester 2022/23
- 700.304 VC Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2021/22
- 700.304 VC Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2020/21
- 700.304 VC Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2019/20
- 700.304 VC Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2018/19
- 700.304 VC Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2016/17
- 700.304 VC Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2015/16
- 700.304 VC Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2014/15
- 700.304 VK Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2013/14
- 700.304 VK Fundamentals of Image Processing (2.0h / 4.0ECTS)
-
Wintersemester 2012/13
- 700.304 VK Fundamentals of Image Processing (2.0h / 4.0ECTS)