621.061 (20W) Einführung in die Artificial Intelligence I

Wintersemester 2020/21

Anmeldefrist abgelaufen.

Erster Termin der LV
08.10.2020 12:00 - 14:00 , online Off Campus
Nächster Termin:
22.10.2020 12:00 - 14:00 , online Off Campus

Überblick

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Präsenz-Lehreveranstaltungen und Umstellung auf Online-Prüfungen) erforderlich sein.

Weitere Informationen zum Lehrbetrieb vor Ort finden Sie unter: https://www.aau.at/corona.
Lehrende/r
LV-Titel englisch
Introduction to Artificial Intelligence I
LV-Art
Vorlesung-Kurs (prüfungsimmanente LV )
LV-Modell
Onlinelehrveranstaltung
Semesterstunde/n
2.0
ECTS-Anrechnungspunkte
3.0
Anmeldungen
27 (18 max.)
Organisationseinheit
Unterrichtssprache
Englisch
mögliche Sprache/n der Leistungserbringung
Englisch
LV-Beginn
08.10.2020
eLearning
zum Moodle-Kurs

Zeit und Ort

Beachten Sie bitte, dass sich aufgrund von COVID-19-Maßnahmen die derzeit angezeigten Termine noch ändern können.
Liste der Termine wird geladen...

LV-Beschreibung

Intendierte Lernergebnisse

Provides an introduction to general problem solving methods used in Artificial Intelligence and Knowledge-Based Systems. The course presents a variety of search approaches as well as modern knowledge representation and reasoning systems implementing them.

Lehrmethodik inkl. Einsatz von eLearning-Tools

Classroom instructions mixed with practical exercises. The teaching language is English or German depending on the preferences of the audience. The slides are in English.

Inhalt/e

Covered topics include:

  • Uninformed and informed search methods
  • Overview of incomplete (local) approaches to solving hard problems
  • Knowledge representation and reasoning with Constraints Programming
  • MiniZinc programming language            

Erwartete Vorkenntnisse

Algorithms and data structures

Literatur

  • Stuart Russell and Peter Norvig: Artificial Intelligence: A modern approach. Prentice Hall, 2009
  • Rina Dechter: Constraint Processing. Morgan Kaufmann Publishers, 2003
  • Stefan Edelkamp and Stefan Schrödl: Heuristic search: theory and applications. Elsevier, 2011

Intendierte Lernergebnisse

Provides an introduction to general problem solving methods used in Artificial Intelligence and Knowledge-Based Systems. The course presents a variety of search approaches as well as modern knowledge representation and reasoning systems implementing them.

Lehrmethodik inkl. Einsatz von eLearning-Tools

Classroom instructions mixed with practical exercises. The teaching language is English or German depending on the preferences of the audience. The slides are in English.

Inhalt/e

Covered topics include:

  • Uninformed and informed search methods
  • Overview of incomplete (local) approaches to solving hard problems
  • Knowledge representation and reasoning with Constraints Programming
  • MiniZinc programming language               

Erwartete Vorkenntnisse

Algorithms and data structures

Literatur

  • Stefan Edelkamp and Stefan Schrödl: Heuristic search: theory and applications. Elsevier, 2011
  • Rina Dechter: Constraint Processing. Morgan Kaufmann Publishers, 2003
  • Stuart Russell and Peter Norvig: Artificial Intelligence: A modern approach. Prentice Hall, 2009

Prüfungsinformationen

Beurteilungsschema

Note/Grade Benotungsschema

Position im Curriculum

  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 19W.1)
    • Fach: Vertiefung Informatik (Wahlfach)
      • 7.3 Einführung in die Artificial Intelligence I ( 2.0h VC / 3.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 3.0 ECTS)
          Absolvierung im 4., 5., 6. Semester empfohlen
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 17W.1)
    • Fach: Medieninformatik (Wahlfach)
      • 4.1 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 17W.1)
    • Fach: Natural Language Processing (Wahlfach)
      • 5.2 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 17W.1)
    • Fach: Softwareentwicklung (Wahlfach)
      • 6.2 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 17W.1)
    • Fach: Wirtschaftsinformatik (Wahlfach)
      • 7.2 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 12W.1)
    • Fach: Medieninformatik (Wahlfach)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 12W.1)
    • Fach: Natural Language Processing (Wahlfach)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 12W.1)
    • Fach: Softwareentwicklung (Wahlfach)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)
  • Bachelorstudium Angewandte Informatik (SKZ: 511, Version: 12W.1)
    • Fach: Wirtschaftsinformatik (Wahlfach)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)
  • Masterstudium Angewandte Informatik (SKZ: 911, Version: 13W.1)
    • Fach: Vertiefung Informatik (Pflichtfach)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Einführung in die Artificial Intelligence I (2.0h VC / 2.0 ECTS)

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Alle die Lehrveranstaltungen der Kette sind noch nicht genehmigt