623.500 (21S) Data Engineering

Sommersemester 2021

Anmeldefrist abgelaufen.

Erster Termin der LV
08.03.2021 10:00 - 12:00 online Off Campus
... keine weiteren Termine bekannt

Überblick

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Präsenz-Lehreveranstaltungen und Umstellung auf Online-Prüfungen) erforderlich sein.

Weitere Informationen zum Lehrbetrieb vor Ort finden Sie unter: https://www.aau.at/corona.
Lehrende/r
LV-Titel englisch
Data Engineering
LV-Art
Vorlesung-Kurs (prüfungsimmanente LV )
LV-Modell
Onlinelehrveranstaltung
Semesterstunde/n
2.0
ECTS-Anrechnungspunkte
4.0
Anmeldungen
24 (30 max.)
Organisationseinheit
Unterrichtssprache
Englisch
LV-Beginn
08.03.2021
eLearning
zum Moodle-Kurs

Zeit und Ort

Beachten Sie bitte, dass sich aufgrund von COVID-19-Maßnahmen die derzeit angezeigten Termine noch ändern können.
Liste der Termine wird geladen...

LV-Beschreibung

Intendierte Lernergebnisse

The successful student will have a deeper understanding of the challenges imposed by Big Data and know state of the art data engineering methods and techniques focusing on big data applications. 



Lehrmethodik inkl. Einsatz von eLearning-Tools

The VC will be a mixture of a classical lecture, presentations of assignment solutions and student presentations. The course will be held fully online via MS Teams.

Inhalt/e

  • Introduction to Big Data, Data Engineering and Data Science.
  • Recap on RDBMS and common file formats. 
  • Managing XML and JSON in RDBMS. 
  • Advanced SQL queries.
  • Scaling of RDBMS. 
  • Data Warehouses
  • Big Data Frameworks
    • MapReduce
    • Apache Spark
    • SQL on Big Data Architectures
  • (Big) Data Integration
  • Data Provenance and Data Quality
  • Data Lakes

Erwartete Vorkenntnisse

Relational Databases (Lecture "Datenbanken"),  Java Programming


Literatur

Principles of Database Management: The Practical Guide to Storing, Managing and Analyzing Big and Small Data. Cambridge University Press New York, NY, USA ©2018 ISBN:1107186129 9781107186125

Prüfungsinformationen

Prüfungsmethode/n

  • Credits for weekly assignments.
  • Project and Project Presentation.
  • Final Exam (either written, or oral, depending on the pandemic situation)

Prüfungsinhalt/e

All topics addressed by the lecture or practical parts.

Beurteilungskriterien/-maßstäbe

the successful participant will have reached at least 50% of all parts (weekly assignments, project, and final exam)

Beurteilungsschema

Note Benotungsschema

Position im Curriculum

  • Masterstudium Informatics (SKZ: 911, Version: 19W.1)
    • Fach: Vertiefung Informatik (Pflichtfach)
      • 1.1 Data Engineering ( 2.0h VC / 4.0 ECTS)
        • 623.500 Data Engineering (2.0h VC / 4.0 ECTS)
          Absolvierung im 1. Semester empfohlen
  • Masterstudium Information Management (SKZ: 922, Version: 19W.1)
    • Fach: Informatics (Pflichtfach)
      • 1.1 Data Engineering ( 0.0h VC / 4.0 ECTS)
        • 623.500 Data Engineering (2.0h VC / 4.0 ECTS)
          Absolvierung im 1. Semester empfohlen

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Wintersemester 2021/22
  • 623.500 VC Data Engineering (2.0h / 4.0ECTS)
Wintersemester 2020/21
  • 623.500 VC Data Engineering (2.0h / 4.0ECTS)
  • 623.501 VC Data Engineering (2.0h / 4.0ECTS)
Wintersemester 2019/20
  • 623.500 VC Data Engineering (2.0h / 4.0ECTS)