700.325 (20W) Practical Introduction to Neural Networks and Deep Learning

Wintersemester 2020/21

Anmeldefrist abgelaufen.

Erster Termin der LV
05.10.2020 14:00 - 16:00 Online Off Campus
... keine weiteren Termine bekannt

Überblick

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Präsenz-Lehreveranstaltungen und Umstellung auf Online-Prüfungen) erforderlich sein.

Weitere Informationen zum Lehrbetrieb vor Ort finden Sie unter: https://www.aau.at/corona.
Lehrende/r
LV-Titel englisch
Practical Introduction to Neural Networks and Deep Learning
LV-Art
Vorlesung-Kurs (prüfungsimmanente LV )
LV-Modell
Onlinelehrveranstaltung
Semesterstunde/n
2.0
ECTS-Anrechnungspunkte
4.0
Anmeldungen
30 (25 max.)
Organisationseinheit
Unterrichtssprache
Englisch
LV-Beginn
05.10.2020
eLearning
zum Moodle-Kurs

Zeit und Ort

Beachten Sie bitte, dass sich aufgrund von COVID-19-Maßnahmen die derzeit angezeigten Termine noch ändern können.
Liste der Termine wird geladen...

LV-Beschreibung

Intendierte Lernergebnisse

Neural networks and deep learning (DL) have different applications in text categorization, e.g., spam filtering, fraud detection, optical character recognition, machine vision, e.g., face detection, licenses plate recognition, advanced driver assistance systems, natural-language processing, e.g., spoken language understanding, market segmentation, e.g., predict if a customer will get a credit, and  bioinformatics, e.g.,  classify proteins or lipidomes according to their function.

The lecture will cover the practical topics regarding (a) Neural networks and deep learning models, (b) guide to transfer the acquired knowledge to solve classification problems for industry and research, and (c) show some use-cases and interesting applications from the state-of-the-art.

Inhalt/e

  • Data preprocessing / data augmentation
  • Unsupervised Learning and Clustering
  • Deep Learning (multilayer perceptron, convolutional models, recurrent models)
  • Deep learning libraries (torch, theano, keras, tensorflow...etc.)
  • Time series forecast
  • Evaluation Metrics

Erwartete Vorkenntnisse

Basic python knowledge 

Prüfungsinformationen

Im Fall von online durchgeführten Prüfungen sind die Standards zu beachten, die die technischen Geräte der Studierenden erfüllen müssen, um an diesen Prüfungen teilnehmen zu können.

Beurteilungsschema

Note Benotungsschema

Position im Curriculum

  • Bachelorstudium Informationstechnik (SKZ: 289, Version: 17W.1)
    • Fach: Informationstechnische Vertiefung (Wahlfach)
      • 10a.3 Wahl von Lehrveranstaltungen ( 0.0h VO/VC/KS/UE / 6.0 ECTS)
        • 700.325 Practical Introduction to Neural Networks and Deep Learning (2.0h VC / 4.0 ECTS)
  • Masterstudium Information and Communications Engineering (ICE) (SKZ: 488, Version: 15W.1)
    • Fach: Information and Communications Engineering: Supplements (NC, ASR) (Wahlfach)
      • Wahl aus dem LV-Katalog (Anhang 4) ( 0.0h VK, VO, KU / 14.0 ECTS)
        • 700.325 Practical Introduction to Neural Networks and Deep Learning (2.0h VC / 4.0 ECTS)
  • Masterstudium Information and Communications Engineering (ICE) (SKZ: 488, Version: 15W.1)
    • Fach: Technical Complements (NC, ASR) (Wahlfach)
      • Wahl aus dem LV-Katalog (Anhang 5) ( 0.0h VK, VO, KU / 12.0 ECTS)
        • 700.325 Practical Introduction to Neural Networks and Deep Learning (2.0h VC / 4.0 ECTS)
  • Masterstudium Information and Communications Engineering (ICE) (SKZ: 488, Version: 15W.1)
    • Fach: Information and Communications Engineering: Supplements (NC, ASR) (Wahlfach)
      • Wahl aus dem LV-Katalog (Anhang 4) ( 0.0h VK, VO, KU / 14.0 ECTS)
        • 700.325 Practical Introduction to Neural Networks and Deep Learning (2.0h VC / 4.0 ECTS)
  • Masterstudium Information and Communications Engineering (ICE) (SKZ: 488, Version: 15W.1)
    • Fach: Technical Complements (NC, ASR) (Wahlfach)
      • Wahl aus dem LV-Katalog (Anhang 5) ( 0.0h VK, VO, KU / 12.0 ECTS)
        • 700.325 Practical Introduction to Neural Networks and Deep Learning (2.0h VC / 4.0 ECTS)
  • Masterstudium Information and Communications Engineering (ICE) (SKZ: 488, Version: 15W.1)
    • Fach: Autonomous Systems and Robotics: Advanced (ASR) (Wahlfach)
      • Wahl aus dem LV-Katalog (siehe Anhang 3) ( 0.0h VK, VO / 30.0 ECTS)
        • 700.325 Practical Introduction to Neural Networks and Deep Learning (2.0h VC / 4.0 ECTS)

Gleichwertige Lehrveranstaltungen im Sinne der Prüfungsantrittszählung

Wintersemester 2021/22
  • 700.325 VC Practical Introduction to Neural Networks and Deep Learning (2.0h / 4.0ECTS)
Wintersemester 2019/20
  • 700.325 VC Practical Introduction to Neural Networks and Deep Learning (2.0h / 4.0ECTS)