621.061 (20S) Introduction to Artificial Intelligence I

Sommersemester 2020

Time for applications expired.

First appointment of the course
05.03.2020 14:30 - 16:30 N.1.43 On Campus
... no other known appontments

Overview

Lecturer
Course title german
Einführung in die Artificial Intelligence I
Type
Lecture - Course (continuous assessment course )
Hours per Week
2.0
ECTS-credits
3.0
Registrations
36 (30 max.)
Organisational Unit
Language of Instruction
English
Course begins on (set in LVOnline)
05.03.2020
eLearning
go to Moodle-Course

Time and place

List of events is loading...

Course Information

Learning Outcome

Provides an introduction to general problem solving methods used in artificial intelligence and knowledge-based systems. The course presents a variety of search approaches as well as modern knowledge representation and reasoning systems implementing them.

Teaching methodology including the use of eLearning tools

Classroom instructions mixed with practical exercises. The teaching language is English or German depending on the preferences of the audience. The slides are in English.

Course overview

Covered topics include:

  • Uninformed and informed search methods
  • Overview of incomplete (local) approaches to solving hard problems
  • Knowledge representation and reasoning with constraints programming
  • MiniZinc programming language   
  • Game playing          

Prior knowledge

Algorithms and data structures

Literature

  • Stuart Russell and Peter Norvig: Artificial Intelligence: A modern approach. Prentice Hall, 2009
  • Rina Dechter: Constraint Processing. Morgan Kaufmann Publishers, 2003
  • Stefan Edelkamp and Stefan Schrödl: Heuristic search: theory and applications. Elsevier, 2011

Learning Outcome

Provides an introduction to general problem solving methods used in artificial intelligence and knowledge-based systems. The course presents a variety of search approaches as well as modern knowledge representation and reasoning systems implementing them.

Teaching methodology including the use of eLearning tools

Classroom instructions mixed with practical exercises. The teaching language is English or German depending on the preferences of the audience. The slides are in English.

Course overview

Covered topics include:

  • Uninformed and informed search methods
  • Overview of incomplete (local) approaches to solving hard problems
  • Knowledge representation and reasoning with Constraints Programming
  • MiniZinc programming language   
  • Game playing            

Prior knowledge

Algorithms and data structures

Literature

  • Stefan Edelkamp and Stefan Schrödl: Heuristic search: theory and applications. Elsevier, 2011
  • Rina Dechter: Constraint Processing. Morgan Kaufmann Publishers, 2003
  • Stuart Russell and Peter Norvig: Artificial Intelligence: A modern approach. Prentice Hall, 2009

Exam information

Im Fall von online durchgeführten Prüfungen sind die Standards zu beachten, die die technischen Geräte der Studierenden erfüllen müssen, um an diesen Prüfungen teilnehmen zu können.

Grading scheme

Grade / Grade grading scheme

Degree programmes

  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 19W.1)
    • Fach: Vertiefung Informatik (Compulsory elective)
      • 7.3 Einführung in die Artificial Intelligence I ( 2.0h VC / 3.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
          Absolvierung im 4., 5., 6. Semester empfohlen
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 17W.1)
    • Fach: Medieninformatik (Compulsory elective)
      • 4.1 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 17W.1)
    • Fach: Natural Language Processing (Compulsory elective)
      • 5.2 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 17W.1)
    • Fach: Software Development (Compulsory elective)
      • 6.2 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 17W.1)
    • Fach: Business Informatics (Compulsory elective)
      • 7.2 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 12W.1)
    • Fach: Media Informatics (Compulsory elective)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 12W.1)
    • Fach: Natural Language Processing (Compulsory elective)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 12W.1)
    • Fach: Software Development (Compulsory elective)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Bachelor's degree programme Applied Informatics (SKZ: 511, Version: 12W.1)
    • Fach: Business Informatics (Compulsory elective)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Master's degree programme Applied Informatics (SKZ: 911, Version: 13W.1)
    • Fach: Vertiefung Informatik (Compulsory subject)
      • Knowledge Engineering ( 2.0h VO / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)
  • Masterstudium Mathematics (SKZ: 401, Version: 18W.1)
    • Fach: Informatics (Compulsory elective)
      • 8.5 Heuristic Search ( 2.0h VC / 2.0 ECTS)
        • 621.061 Introduction to Artificial Intelligence I (2.0h VC / 3.0 ECTS)

Equivalent Courses for counting the exam attempts

Sommersemester 2022
  • 621.061 VC Einführung in die Artificial Intelligence I (2.0h / 3.0ECTS)
Wintersemester 2021/22
  • 621.061 VC Einführung in die Artificial Intelligence I (2.0h / 3.0ECTS)
Sommersemester 2021
  • 621.061 VC Einführung in die Artificial Intelligence I (2.0h / 3.0ECTS)
Wintersemester 2020/21
  • 621.061 VC Einführung in die Artificial Intelligence I (2.0h / 3.0ECTS)
Wintersemester 2019/20
  • 621.061 VC Einführung in die Artificial Intelligence I (2.0h / 3.0ECTS)